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REVIEWS AND COMMENTARY•REVIEW

The number of artificial intelligence (AI)– and machine learn-
ing–enabled medical devices cleared by the U.S. Food and 

Drug Administration (FDA) for use in radiology has rapidly 
grown into the high hundreds (1). However, even the most 
advanced tools intended for computer-aided detection and 
diagnosis remain task-specific, such as identifying intracranial 
hemorrhage (2). Many of these tools already show benefits in 
clinical practice and will continue to improve and incorporate 
new features. However, these task-specific approaches, referred 
to herein as “narrow AI,” face inherent limitations that con-
strain long-term value (3). Financially, the need for multiple 
solutions leads to unsustainable costs. Operationally, repeatedly 
integrating various tools results in inefficiencies. Clinically, nar-
row AI lacks the ability to provide comprehensive and flexible 
interpretation and decision support.

There is growing interest in developing generalist ap-
proaches to bridge gaps in image interpretation, including but 
not limited to lesion detection, quantification, and differential 
diagnosis (4). These generalist radiology AI (GRAI) models 
are designed to assist radiologists across a wide range of imag-
ing tasks rather than focusing on a single disease or modal-
ity. GRAI should support radiologists throughout the entire 
imaging workflow, including detection, differential diagnosis, 
measurements, and comparisons, while integrating clinical 
data, answering questions, and providing recommendations. 
Moreover, GRAI could perform superhuman tasks such as 
opportunistic screening and predictive analytics, identifying 
patterns imperceptible to human readers (5). While GRAI 
can enhance efficiency and provide valuable insights, expert 
human oversight will remain essential for clinical decision-
making and managing complex or ambiguous cases. Like 
generalist medical AI, GRAI will have three distinguishing ca-
pabilities: dynamic task specification, where it adapts to new 
tasks described in plain language without retraining; the abil-
ity to accept inputs and produce outputs using multimodality 

data (eg, any or all of images, laboratory values, and operative 
notes); and the capacity to reason through unfamiliar tasks 
and logically explain outputs (3,6). Consequently, GRAI has 
the potential to serve as a true augmentative intelligence, sup-
porting radiologists across a wider array of clinical tasks while 
enhancing efficiency and diagnostic precision.

Recent advancements such as foundation models have paved 
the way for GRAI (7,8). Foundation models, trained on vast di-
verse unlabeled datasets, learn general patterns without requir-
ing extensive expert annotation and can then be adapted to a 
wide range of downstream tasks with minimal additional train-
ing, making them highly versatile across different applications 
(9). In research settings, general models have met or exceeded 
narrow model performance in several tasks (10).

We propose that GRAI can potentially address fundamental 
limitations of narrow AI solutions by offering a more holistic 
approach to radiology AI. Table 1 shows key differences in capa-
bilities of narrow AI solutions and GRAI. By more comprehen-
sively detecting abnormalities and providing targeted reporting, 
GRAI moves beyond narrow solutions that must be trained for 
individual abnormalities. It incorporates context by considering 
available clinical information to provide more personalized in-
sights. GRAI offers comprehensive decision support by deliver-
ing tailored recommendations to various stakeholders, such as 
radiologists, referring physicians, and patients. This approach 
enables GRAI to improve financial sustainability by reducing 
the need for multiple point solutions—narrowly scoped AI 
tools each designed to tackle a single imaging task or patho-
logic abnormality. GRAI also streamlines operational efficiency 
by better integrating into the radiology workflow and enhances 
clinical utility by providing actionable insights. This review ar-
ticle describes the financial, operational, and clinical limitations 
of the current approach for radiology AI and outlines a vision 
for GRAI. Our framework aims to guide GRAI development to 
realize its full potential.

Despite the rapid growth of Food and Drug Administration–cleared artificial intelligence (AI)– and machine learning–enabled medical devices for 
use in radiology, current tools remain limited in scope, often focusing on narrow tasks and lacking the ability to comprehensively assist radiologists. 
These narrow AI solutions face limitations in financial sustainability, operational efficiency, and clinical utility, hindering widespread adoption 
and constraining their long-term value in radiology practice. Recent advances in generative and multimodal AI have expanded the scope of image 
interpretation, prompting discussions on the development of generalist medical AI. In this context, this review proposes the concept of generalist 
radiology AI (GRAI) and introduces key features for its implementation. GRAI aims to (a) create reports based on positive diagnoses, (b) tailor 
reports to indications for normal studies, (c) compare findings with prior imaging, (d) incorporate patient characteristics, and (e) provide uncertainty-
informed, interactive recommendations. By consolidating image interpretation and expanding the incorporation of patient context, GRAI has the 
potential to overcome the limitations of narrow AI solutions, improve financial sustainability, streamline operational efficiency, and enhance clinical 
utility. Appropriate development of GRAI, building on these proposed features, is crucial for realizing the full potential of AI in radiology and 
enhancing diagnostic performance while reducing the clinical burden on radiologists.
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Limitations and Barriers to Adoption of  
Current Narrow Radiology AI

Short-term Limitations
Many FDA-cleared solutions triage certain emergent findings. 
These tools have merits, particularly in emergency departments 
or intensive care units where reduced turnaround time can have 
a major impact. However, evidence on whether these tools ac-
tually meaningfully shorten turnaround time remains inconsis-
tent; institutions may not be willing to pay and make operational 
changes to achieve relatively small benefits from the handful of 
existing point solutions (11–14).

Abbreviations
AI = artificial intelligence, FDA = Food and Drug Administration, 
GRAI = generalist radiology AI

Summary
Generalist radiology artificial intelligence (GRAI), incorporating both 
fundamental attributes of generalist medical artificial intelligence (AI) 
and radiology-specific features, can help address financial, operational, 
and clinical limitations of narrow radiology AI solutions.

Essentials
	■ Narrow radiology artificial intelligence (AI) solutions suffer 
from inherent financial (unsustainable price scaling, market 
fragmentation), operational (repetitive due diligence and 
integration needs), and clinical (lack of clinical context and 
flexibility) limitations.

	■ Generalist radiology AI (GRAI) can help address these limitations 
by consolidating image interpretation assistance into one 
package while incorporating context and providing tailored 
recommendations.

	■ By producing more clinically useful and comprehensive reports, 
GRAI can better help reduce radiologist effort and unlock new 
value propositions by truly helping address workload and cognitive 
burden concerns.

	■ GRAI systems should incorporate the following five key features 
to move beyond narrow task tools: (a) reporting with multifinding 
detection and characterization, (b) indication-tailored reporting for 
normal studies, (c) longitudinal image comparison, (d) integration 
of patient characteristics and clinical context, and (e) uncertainty-
aware, interactive recommendations.

As detection labels for different pathologic abnormalities 
have become more comprehensive, multipathology narrow AI 
tools could conceivably be used to screen out normal studies; 
however, abnormal studies will remain challenging to com-
prehensively evaluate with existing narrow tools. For example, 
while many solutions for chest radiographs are specific for tho-
racic abnormalities, such as pneumothorax, they are less specific 
for others; a generic humeral bone lesion detection solution 
would need to provide additional characterization to be clini-
cally useful (15). Even as vendors improve narrow AI solutions, 
these tools have inherent financial, operational, and clinical 
limitations (Fig 1).

Financial
AI and machine learning devices are often offered on a subscrip-
tion basis, such as per site, per workstation, per radiologist, per 
study, or sometimes even per narrow AI solution (16). As vendors 
incorporate an increasing number of these solutions into their 
offerings, costs will also scale up. Although pricing structures 
vary, some vendors who use a per-solution structure charge up 
to $100 000 per solution. Moreover, the number of narrow solu-
tions required for comprehensive coverage equivalent to a radi-
ologist would be much higher for cross-sectional imaging studies. 
At some point, health systems could be priced out of these tools 
and may find it cheaper to hire an additional radiologist (17).

There are additional costs beyond initial licensure. Infrastruc-
ture and hardware may need to be adjusted or upgraded as tools 
evolve. As increasing numbers of solutions from different vendors 
are used, chances of malfunctions are higher. Upgrades, repairs, 
and other overhead costs will also increase alongside point so-
lution availability (18). Point solutions complicate budget plan-
ning, as purchasers cannot predict new offerings (19).

Many imaging studies have anatomic coverage overlap; for 
example, chest CT scans capture the upper abdomen, while ab-
dominal CT scans show the lung bases. Trying to achieve compre-
hensive coverage using narrow tools trained for particular types of 
studies could result in redundant coverage across different tools. 
For example, a comprehensive chest radiograph tool must iden-
tify abnormalities in the upper abdomen, but a dedicated abdom-
inal radiograph tool captures the same abnormalities.

Table 1: Key Differences in Capabilities of Narrow and Generalist Radiology AI

Area Narrow Radiology AI GRAI
Adaptability Will need to be retrained with large amounts of new 

examples to adapt to data distribution shifts, such as 
from new scanners or changing patient populations

Uses in-context and few-shot learning to adapt to shifting data 
distributions without needing a large amount of new data

Flexibility Typically needs a rigid set of predefined inputs used in 
training

Combines data from any combination of available modalities for a 
given patient

Medical  
knowledge

Lacks true domain knowledge and relies on learned 
statistical associations

Has a representation of medical knowledge that can be used to 
apply concepts to new problems and explain evidence-based 
recommendations

Interactivity Offers a predetermined type of output, such as detection 
or classification of pathologic abnormalities

Tailors output depending on user preference, using a combination 
of large language and vision language models

Training Must be trained on many examples of a specific 
pathologic abnormality or task before it can learn to 
perform it well

Performs new tasks by being provided a natural language 
explanation (dynamic task specification) without needing to be 
retrained

Note.—In-context and few-shot learning refers to the ability of a model to generalize to a task after seeing a handful of examples (3). AI = 
artificial intelligence, GRAI = generalist radiology AI.
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Market fragmentation resulting from a wide spectrum of 
vendors and tools also increases the complexity of financial de-
cisions. Vendors have different pricing structures and service 
agreements, making it difficult to evaluate disparate offers. 
Fragmentation also reduces the ability of providers to nego-
tiate bulk discounts, as they are more likely to engage with 
multiple vendors.

Operational
Deploying even a single new tool requires buy-in and monitor-
ing from several stakeholders, including information technology 
staff, radiologists, clinicians, and administrators. They must agree 
on the clinical indication and expected return on investment for 
any device under consideration (20). Carrying out due diligence 
among narrow tools is especially onerous due to fragmentation, as 
many vendors differ in the imaging modalities and examinations 
for which they offer solutions.

Incorporating tools into the workflow is also challenging. 
Information technology needs to be involved early to ascertain 
needs in terms of graphics and central processing units and to 
review network security and performance for cloud-based solu-
tions. If a new tool is integrated into a picture archiving and com-
munication system (PACS), then PACS specialists also need to 
be involved (19). Tool efficacy in the target population typically 
needs internal and external testing before deployment due to po-
tential decreases in performance as a result of technical parameters 
(scanners, algorithms, protocols) and patient characteristics (21).

Workflow optimization is necessary to ensure radiologists are 
not slowed once these tools are implemented. Sociotechnical 

impacts, namely the organizational, behavioral, and cultural 
consequences of new technology interacting with users and 
workflows, have historically been more decisive barriers to 
adoption than purely technical shortcomings, such as with early 
sepsis alerts that clashed with work patterns and were ultimately 
often ignored. These impacts need to be considered from per-
spectives of both radiologists and other clinicians (22). After a 
tool has been integrated into the workflow, stakeholders moni-
tor for data drift, where the real-world cases the model sees start 
to differ from the training data, along with performance and 
overall return on investment.

Iterating through this process for an increasing number of solu-
tions over time magnifies the operational effort required manyfold, 
particularly when multiple vendors are involved but even when a 
single vendor expands its array of solutions. Platforms integrating 
multiple AI tools will help reduce financial and logistical imple-
mentation costs, simplify the user workflow, allow for easier solu-
tion additions or swaps, and make it easier to continuously monitor 
performance metrics. However, certain challenges posed by the 
diversity of different narrow solutions cannot be fully solved by 
platforms, such as comparison of price structures and scaling costs. 
Moreover, as described in the following section, platforms do not 
address inherent clinical limitations of narrow radiology AI.

Clinical
Clinical limitations of narrow tools will ultimately limit their 
impact on patient outcomes. The most advanced tools now de-
tect a remarkable number of primary pathologic abnormalities. 
However, even if an abnormality is identified, fully characterized 

Figure 1:  A visual representation comparing (A) narrow artificial intelligence (AI) and (B) generalist radiology AI (GRAI). Narrow AI algorithms in radiology suffer from many 
challenges. These challenges include limited scope, lack of contextual understanding, and potential for missed findings, which lead to clinical, operational, and financial challenges 
(puzzle pieces in A). GRAI offers more comprehensive and integrated solutions (the completed puzzle in B). GRAI provides improved and adaptable clinical utility, consolidated 
solutions to streamline due diligence and cost comparisons, and the ability to solve financial and operational challenges with fewer iterations. Sociotechnical impacts include orga-
nizational, behavioral, and cultural consequences of new technology interacting with users and workflows. ROI = return on investment.
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findings often need to be communicated to guide further man-
agement. For example, detection of a humeral bone lesion is use-
ful, but clinical value is lost by only reporting the presence of an 
abnormal bone lesion. This is because certain lesions can be classi-
fied as benign findings that do not need additional work-up while 
others can immediately be classified as aggressive lesions that need 
biopsy. Training a narrow AI model to detect and classify every 
possible abnormality is daunting already for radiographs; scaling 
such an approach to CT and MRI is much more challenging.

Current narrow tools are limited by their inability to draw on 
multimodal data, most prominently through comparisons with 
prior imaging, which is key to ensuring high-quality reporting 
(23). Even for narrow triage assistance tools, comparisons with 
recent studies are important to avoid repeatedly flagging stud-
ies as positive for acute findings when they are stable follow-up 
examinations, such as of intracranial hemorrhage, to avoid alarm 
fatigue (24).

Longitudinal image comparison tools will likely emerge for 
narrow solutions in the coming years. However, clinical data 
limitations may be more challenging. Radiologists often rely 
on electronic health record information such as patient pre-
sentation or medical and surgical history. Certain data such 
as operative reports or laboratory values are not always avail-
able. Multimodal tools will need to flexibly use whatever data 
are present, as opposed to rigid models that always require the 
same inputs. Models also cannot output reasoned reports and 
recommendations tailored to different indications, reducing 
their ability to answer targeted questions posed by different 
physicians. For example, liver volume should not be reported 

in all abdominopelvic examinations but is critical to report for 
transplant planning.

Ultimately, narrow AI models’ inability to incorporate med-
ical context and provide utility beyond initial diagnosis caps 
their value to the end user. The fundamental approach under-
lying narrow AI development, particularly the need for task-
specific training and inflexibility with regard to inputs, makes 
it unlikely that these features will emerge, particularly for CT 
and MRI.

Objectives for GRAI
We propose features that diagnostic GRAI should incorporate 
(Table 2, Fig 2). These features are meant to supplement the three 
core aspects of a generalist medical AI model previously refer-
enced in the introduction (3). Some of these new features are 
likely to be introduced to narrow AI tools as well but should be 
universal features for GRAI.

Table 2: Key Features That Should Be Incorporated into 
GRAI

Proposed Key GRAI Features
Reporting with multifinding detection and characterization
Reports tailored to indications for normal studies
Longitudinal image comparison
Incorporation of patient characteristics
Uncertainty-informed and interactive recommendations
Note.—GRAI = generalist radiology artificial intelligence.

Figure 2:  Example of generalist radiology artificial intelligence (GRAI). In this hypothetical example, a patient with recent pneumonia seen 
on a prior chest radiograph underwent a repeat chest radiography examination for a given indication of “pneumonia follow up.” The current 
radiograph shows no pulmonary findings but an incidental benign enchondroma (red rectangle). GRAI assists the radiologist by consolidating 
current and prior imaging interpretation while incorporating context from the electronic health record to provide uncertainty-informed and interac-
tive recommendations (recs) in a report. This is an advantage over current narrow artificial intelligence tools, which are limited by their inability to 
draw on comparisons with prior imaging, fully characterize positive findings and pertinent negative findings, incorporate patient data, and provide 
recommendations, which are key to ensuring high-quality reporting.
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Feature 1: Reporting with Multidisease Detection and 
Characterization
Even when an initial diagnosis is made, an end user will often need 
to report associated characteristics; a useful model will need to pro-
vide all of this output in the form of a report. These findings may 
not be inherently pathologic, such as variant abdominal vascular 
anatomy that may not be noteworthy or mentioned in the impres-
sion on most abdominopelvic CT examinations, but are critical 
to report for patients who require the operating room, such as for 
transplant surgery or tumor resection. Other characteristics may 
only be relevant when there is a primary abnormality, such as a frac-
ture for which the presence of intra-articular extension increases the 
necessity of surgical fixation. Finally, providing complete patho-
logic abnormality characterization can help instill confidence or 
provide reasoning behind a particular diagnosis, just as good radi-
ology reports do (25). Figure 3 shows examples of pertinent GRAI 
characterization for primary diagnoses.

For each diagnosis, GRAI will need to provide imaging informa-
tion important for directing clinical decision-making. An initiative 
that can be used to train models for this purpose is the development 
of common data elements (CDEs) as proposed by the RSNA and 
the American College of Radiology and seen on RadElement.org 
(26). The most relevant example is a collection of imaging features 
that should be reported for a disease entity. For example, elements 
that currently correspond to “acute appendicitis” are presence, ap-
pendiceal diameter, fat stranding, free fluid, obstructing focus and 
size, lumen contents, abscess, and opacification. While additional 
elements could be proposed, such as extraluminal air for acute ap-
pendicitis, the larger obstacle is that only 51 CDEs are currently 
available, and not all are for diagnoses.

Feature 2: Outputting Reports Tailored to Requested Indications 
for Normal Studies
Even for normal studies, GRAI will need to output reports to re-
flect provided indications. A major purpose of report generation 

documenting normal findings is to reassure referring physicians 
and specialists about the AI output. For example, a normal brain 
MRI report for an indication of seizure may mention the absence 
of cortical developmental malformations, heterotopic gray mat-
ter, or mesial temporal structural abnormalities that would not be 
mentioned in a report for an indication such as stroke. An epilep-
tologist reading the brain MRI report would likely expect to see 
these specific normal findings explicitly mentioned; on the other 
hand, their absence might reduce the confidence in the report and 
result in a request for a more detailed review by a radiologist.

Feature 3: Longitudinal Image Comparison
Longitudinal image comparison is already needed but generally 
not available for current narrow tools. Longitudinal image com-
parison avoids misleading worklist prioritization or false alarms 
for “acute” stable findings from prior studies. Given that image 
comparisons are a core feature of imaging guidelines (and con-
sidering the historical medicolegal complications from lack of 
proper comparison), long-term image comparisons will need to 
be a prerequisite feature of GRAI (27,28).

Value is lost by looking only at static images, particularly for 
patients who already have a diagnosis. For example, oncologists 
need comparisons with baseline and prior scans to assess response 
to treatment. Orthopedic surgeons obtain follow-up radiographs 
after fractures to assess proper healing in appropriate alignment. 
Depending on the abnormality, different features will need to be 
compared across the prior studies, ranging from three-dimensional 
size (tumors) to angulation and displacement (fractures).

Feature 4: Incorporation of Patient Characteristics
Like radiologists, GRAI will need to use clinical characteristics 
such as demographics (eg, race, sex, and age), clinical and fam-
ily history, and symptoms to optimize reports. Multimodal nar-
row AI could also incorporate some of this information; however, 
more advanced types of data such as key laboratory markers, 

Figure 3:  Generalist radiology artificial intelligence (GRAI) should be capable of providing fully characterized diagnoses with the reference standard based on the (A) input 
image and patient clinical history data. Diagram shows examples of six primary imaging diagnoses (indicated by yellow arrows) with pertinent characteristics that GRAI should 
describe if present in (B) the corresponding radiology report. GRAI offers an advantage over current narrow artificial intelligence tools, which may detect a primary diagnosis but 
not incorporate associated characteristics.
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pathologic findings, or operative reports are not always available. 
GRAI, by virtue of its second key capability, can use any combi-
nation of available data to modify its output.

Incorporating clinical context can improve performance. 
For example, imaging findings carry different differential di-
agnoses depending on age; for instance, white matter hyper-
intensities on brain MRI scans are often ascribed to chronic 
microvascular ischemic changes in older adults, while the 
same appearance might be interpreted as sequela of chronic 
migraines in young patients. Certain findings may be expected 
depending on the details in the operative report produced by 
the surgeon. GRAI must take nonimaging details into account 
to avoid clinically dubious outputs.

Feature 5: Uncertainty-informed and Interactive 
Recommendations
While GRAI may be able to improve on human performance, 
it will not always have 100% confidence in its outputs. There-
fore, GRAI will need to convey confidence level while offering 
corresponding recommendations (25) and be able to tailor rec-
ommendations based on the end user. Clinicians from different 
specialties will often ask a radiologist questions regarding a single 
individual imaging examination. For example, an oncologist 
and neurosurgeon will ask different questions for a patient with 
metastatic prostate cancer with new pathologic spinal fractures at 
CT. Users should be able to interact with GRAI, potentially by 
prompting a large language model that collaborates with a vision 
language model. These multimodal models can interpret both 
images and text to generate a contextually relevant response.

Value Proposition of GRAI
Through consolidation of image interpretation assistance into 
one package with an expanded ability to incorporate context and 
provide recommendations, GRAI provides tremendous financial, 
operational, and clinical value propositions.

By having the choice to pay for one comprehensive tool rather 
than debate merits of mix-and-match approaches using multiple 
point solutions, users could better compare costs of competing 
investments. GRAI’s multitask capabilities will also increase its 
appeal to diverse stakeholders. These stakeholders may range 
from private groups seeking efficiency gains to academic centers 
seeking more value from tools that can identify incidental and op-
portunistic findings while driving downstream care (29). Adopt-
ing GRAI would add the benefits of integrated AI platforms and 
reduce the effort required for due diligence, infrastructure plan-
ning, workflow integration, and sociotechnical adjustments, as 
these adaptations would happen once rather than repeatedly as 
new solutions are added. Model procurement and due diligence 
would also be more straightforward, as disparate vendor offerings 
are consolidated into GRAI. Performance review and data drift 
monitoring would still be required, but generalist models could 
be expected to better adapt to data drift than narrow models 
given their inherent adaptability using in-context and few-shot 
learning whereby a model generalizes to a task after being shown 
a handful of examples (3,30).

GRAI will improve clinical utility and unlock new value prop-
ositions. Clinical limitations of narrow tools necessitate that radi-
ologists ultimately review and edit imaging examinations for each 

patient (31). GRAI will be more likely to produce viable reports, 
decreasing radiologist work. Consequently, radiologist efficiency 
would be expected to truly improve with downstream effects of 
decreased cognitive burden, helping address burnout, worsening 
imaging backlogs, and delayed reporting (32,33).

The Road Ahead
As GRAI expands to new tasks, we must refine task-specific per-
formance metrics. For example, report generation has moved 
beyond metrics like BLEU (BiLingual Evaluation Understudy), 
which only scores surface-level word overlap, to more relevant 
measures like RadGraph F1 and RadCliQ, which assess whether 
outputs preserve clinical entities and relations (34). The Conversa-
tional Reasoning Assessment Framework for Testing in Medicine, 
or CRAFT-MD, is used to assess large language model output for 
patient interactions (35). Additional metrics are needed for tasks 
such as explaining outputs and making recommendations. Error 
classification must also evolve alongside technical advancements. 
Large language models, for instance, struggle with hallucinations, 
where they produce confident but factually incorrect statements. 
Mitigation approaches such as retrieval-augmented generation, 
which inserts verifiable external evidence at inference time, and 
chain-of-thought prompting, which elicits step-by-step reason-
ing, reduce but do not eliminate these hallucinations (36). Some 
hallucinations, such as fabricating prior studies versus nonexis-
tent lesions, pose distinct risks and should be categorized sepa-
rately to identify model deficiencies.

Data and hardware needs remain crucial. Data sharing is 
evolving as we see greater participation by technology companies 
in radiology AI. We expect to see increasing academic-industry 
relationships wherein data-rich institutions share resources with 
commercial partners that have greater computational capacity. 
At the same time, there is an increasing number of large da-
tasets available for foundation model pretraining and tuning 
(9). Technical approaches will also improve; indeed, improved 
self-supervised learning algorithms have been shown to better 
approximate human performance on rare diseases even with-
out human annotation labels (37). Emerging technology such 
as quantum computing may also ease development of GRAI 
models by reducing overall computational cost (38).

The GRAI timeline will depend on required features. While 
GRAI should ultimately be modality-agnostic and available 
for all modalities, early iterations will likely focus on specific 
modalities due to variations in data availability, interpretive 
complexity, and technical challenges unique to each modality. 
In the next 1–2 years, we expect rapid progress in multidisease 
computer-aided diagnosis for radiographs and CT, with MRI 
lagging due to its more complex sequences and findings. Com-
prehensive detection (bounding boxes, segmentation) will take 
longer (2–4 years), requiring more human annotation, although 
automated segmentation tools like TotalSegmentator may assist 
(39,40). Basic report generation focused on single-study find-
ings without incorporating prior imaging findings or recom-
mendations is already feasible with growing evaluation metrics 
and will likely be achieved within 2–3 years as multidiagnostic 
models improve. More advanced capabilities, such as longitu-
dinal image comparison, clinical data integration, and uncer-
tainty estimation, are already research priorities in narrow AI, 
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accelerating their integration into GRAI, although refining 
these for report generation will likely take 3–5 years. Finally, 
explainability remains the most challenging feature, as even 
state-of-the-art large language models still demonstrate faulty 
reasoning. As other features integrate, explainability will be-
come more complex, likely requiring 5–7 years to develop and 
externally test for robust, transparent GRAI.

The current regulatory framework for radiology AI is primar-
ily designed for narrow tools and is incompatible with GRAI’s 
flexible and evolving capabilities that can handle multiple dis-
tinct tasks. With the increasing focus on foundation models by 
both researchers and vendors, the FDA will inevitably need to 
adapt its regulatory pathways to accommodate these broader 
systems. The FDA has already adapted its approach to evolv-
ing AI technologies, as demonstrated by the Predetermined 
Change Control Plan (PCCP), which allows manufacturers 
to prespecify intended updates to AI models while maintain-
ing regulatory oversight (41). This concept, initially designed 
to accommodate continual updating in AI-based Software as a 
Medical Device, could serve as a foundation for developing a 
regulatory framework for GRAI that permits controlled adapta-
tion without requiring repeated full-scale reapproval. To ensure 
safe and effective deployment, regulators will need to expand 
on PCCP principles by incorporating scenario-based testing, 
real-world performance monitoring, and risk-based stratifica-
tion mechanisms that differentiate low-risk decision support 
functions from high-stakes autonomous analyses. Regulatory 
approval will likely follow a task-based approach, where indi-
vidual functionalities such as multipathologic detection or re-
port generation are cleared separately rather than approving an 
entire GRAI system at once.

Reimbursement pathways also require a major overhaul to 
support the integration of GRAI into clinical practice (42). Cur-
rent reimbursement structures are designed for specific diagnostic 
and procedural tasks, making them ill-suited for a system that 
augments radiologists across multiple domains of imaging inter-
pretation. To address this, policymakers and payers must develop 
new reimbursement models that account for the broad, adapt-
able nature of GRAI, potentially introducing performance-based 
payment structures that reward AI’s contribution to efficiency, 
diagnostic accuracy, and patient outcomes.

Conclusion
The transition from narrow radiology artificial intelligence (AI) to 
generalist radiology AI (GRAI) frameworks will be a pivotal evo-
lution in medical imaging. As ongoing technical advancements 
are integrated into developing GRAI, we anticipate a shift toward 
versatile image interpretation that more closely aligns with the 
multifaceted nature of diagnostic imaging. Proper development 
of GRAI, building on the features we have proposed, is key to 
realizing the full potential of AI in radiology.
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